基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
短视频喜好率预测往往面临着用户及广告的数量巨大且训练数据集高维、稀疏等问题,从而导致预测准确度下降.针对这些问题提出了基于LDA-GBDT-FM的短视频喜好率预测模型,该模型利用隐狄利克雷分配模型(LDA)对原始数据集基于主题分割,利用梯度提升决策树(GBDT)对不同主题的子训练集提取连续型特征的高影响力特征,将其与离散特征合并来训练因子分解机(FM)模型,最后有效组合子模型,进而预测短视频的喜好率.实验基于Bytedance公司的数据集,实验结果表明,提出的LDA-GBDT-FM模型相较于LDA-FM、FM和LR在预测指标上分别提高了3.0%、5.7%和8.5%.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 集成FM的短视频喜好率预测模型
来源期刊 计算机工程与应用 学科 工学
关键词 短视频广告 喜好率预测 主题模型 梯度提升决策树 因子分解机
年,卷(期) 2020,(14) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 118-122
页数 5页 分类号 TP391
字数 4129字 语种 中文
DOI 10.3778/j.issn.1002-8331.1904-0395
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许青林 广东工业大学计算机学院 20 102 5.0 10.0
2 姜文超 广东工业大学计算机学院 28 111 5.0 10.0
3 符基高 广东工业大学计算机学院 2 0 0.0 0.0
4 王丽苗 广东工业大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (380)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短视频广告
喜好率预测
主题模型
梯度提升决策树
因子分解机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导