作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对无人机影像深度学习分类方法缺乏现状,本文利用深度学习理论卷积神经网络方法对无人机影像进行了分类.该法首先抽取无人机影像作为训练集和检验集,然后建立一个2个卷积层-池化层的卷积神经网络模型进行深度学习,通过设定参数并运行模型实现无人机影像分类.实验表明,本文提出的方法可完成较复杂地区无人机影像分类,其分类精度与支持向量机方法相当,为无人机遥感影像分类提供了一个崭新的技术视点.
推荐文章
基于深度学习的无人机遥感影像水体识别
深度学习
卷积神经网络
无人机遥感
MSER
水体识别
基于无人机影像的边坡植物物种分类
边坡
无人机
归一化数字表面模型
植物物种分类
无人机影像自动拼接校正
无人机
影像拼接
均质化变换
重叠区
平滑处理
基于深度学习的四旋翼无人机控制系统设计
深度学习
四旋翼无人机
处突阵法
PID控制器
红外线接收器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习理论的无人机影像分类
来源期刊 北京测绘 学科 地球科学
关键词 深度学习 卷积神经网络 遥感影像分类 无人机测绘 玻尔兹曼机
年,卷(期) 2020,(4) 所属期刊栏目 学术探讨
研究方向 页码范围 481-484
页数 4页 分类号 P232
字数 2980字 语种 中文
DOI 10.19580/j.cnki.1007-3000.2020.04.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阳成 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (48)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(9)
  • 参考文献(2)
  • 二级参考文献(7)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(13)
  • 参考文献(2)
  • 二级参考文献(11)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
遥感影像分类
无人机测绘
玻尔兹曼机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京测绘
月刊
1007-3000
11-3537/P
大16开
北京市海淀区羊坊店路15号
1987
chi
出版文献量(篇)
3644
总下载数(次)
21
论文1v1指导