基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对使用传统极限学习机实现大坝变形预测中,因影响因子复杂导致隐藏层个数难以确定的问题,该文提出一种基于极限学习机与弹性网络支持下的大坝变形预测模型.采用极限学习机算法,将大坝变形影响因子由原本的空间映射到极限学习机的特征空间,建立影响因子与变形结果之间的非线性联系,同时将非线性模型转换成一个线性模式求解问题,并使用弹性网络求解该模型.对比基于极限学习机回归与最小二乘回归算法的实验表明:弹性网络拥有更好的稳定性,改善了极限学习机难以处理的过拟合现象,减弱了因训练集样本不同造成的预测误差大的影响,只需任意设置足够数量的隐含层神经元个数就能得到可靠的预测结果,简化了基于极限学习机的大坝变形预测面临的隐含层神经元个数取舍问题.
推荐文章
基于在线序列-极限学习机的干旱预测
极限学习机
在线序列
干旱
预测因子
基于改进极限学习机的微信热点预测
微信热点
预测模型
极限学习机
验证性测试
权值更新
极限学习机算法的网络安全评价研究
极限学习机
网络安全
评价算法
指标权重
归一化处理
实验分析
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 极限学习机与弹性网络支持下的大坝变形预测
来源期刊 测绘科学 学科
关键词 变形预测 极限学习机 线性模式求解 弹性网络
年,卷(期) 2020,(11) 所属期刊栏目 大地测量学与导航
研究方向 页码范围 20-27,40
页数 9页 分类号
字数 语种 中文
DOI 10.16251/j.cnki.1009-2307.2020.11.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈优良 36 155 8.0 10.0
2 黄劲松 9 3 1.0 1.0
3 胡敏 10 25 3.0 5.0
4 肖钢 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (63)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(10)
  • 参考文献(1)
  • 二级参考文献(9)
2016(8)
  • 参考文献(2)
  • 二级参考文献(6)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变形预测
极限学习机
线性模式求解
弹性网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘科学
月刊
1009-2307
11-4415/P
大16开
北京市海淀区北太平路16号
2-945
1976
chi
出版文献量(篇)
7258
总下载数(次)
36
总被引数(次)
67354
论文1v1指导