基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
国土调查多角度实景举证照片具有视角多、分辨率高、层次丰富和剖面清晰的特点,透视且细致地刻画了土地利用图斑赋存状况和场景,弥补了遥感影像单一天顶视角的不足.本文基于语义分割提出了一种深度卷积神经网络(DCNN)实景照片土地利用场景分类方法,多语义标记照片场景,语义组合智能判定照片土地利用类别.该方法成功地应用在第三次国土调查照片自动核查工作中,减轻了人工判读工作量,提高了土地利用场景自动识别的精度.
推荐文章
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
北京市土地利用生态分类方法
土地利用
生态分类
生态系统服务
北京
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种深度卷积神经网络土地利用场景照片的分类方法
来源期刊 测绘通报 学科 地球科学
关键词 国土调查 实景照片 深度卷积神经网络 多语义标记 语义组合 土地利用场景分类
年,卷(期) 2020,(2) 所属期刊栏目 学术研究
研究方向 页码范围 24-28,42
页数 6页 分类号 P237
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾珏 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (78)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(17)
  • 参考文献(5)
  • 二级参考文献(12)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(10)
  • 参考文献(0)
  • 二级参考文献(10)
2018(9)
  • 参考文献(4)
  • 二级参考文献(5)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
国土调查
实景照片
深度卷积神经网络
多语义标记
语义组合
土地利用场景分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘通报
月刊
0494-0911
11-2246/P
大16开
北京西城区三里河路50号
2-223
1955
chi
出版文献量(篇)
8030
总下载数(次)
39
总被引数(次)
77081
论文1v1指导