基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为改进传统方法在时空相关特征联合提取及结构损伤识别效果等方面存在的不足,结合结构健康监测加速度振动信号的数据特性,将结构损伤识别归约为多变量时间序列分类问题,提出一种联合卷积神经网络(Convolutional Neural Network,CNN)和长短记忆(Long Short-Term Memory,LSTM)循环神经网络模型的桥梁结构损伤识别方法.以结构健康监测获取的加速度振动响应为输入,通过CNN模型提取其多时间窗口内传感器拓扑相关性特征,然后将该特征矩阵输入以Softmax为输出层的LSTM模型,以进一步提取其时间维度特征,并进行结构损伤模式分类.以某连续刚构桥结构缩尺模型的一种无损伤及3种不同程度损伤工况为试验数据环境,验证了提出方法在准确率、精确率、召回率和F值等方面优势.
推荐文章
基于遗传优化神经网络算法的桥梁结构损伤识别
人工神经网络
遗传算法
桥梁损伤识别
抗弯刚度
时延神经网络用于桥梁结构损伤识别
时延神经网络
损伤识别
桁架桥
一种基于卷积神经网络的结构损伤检测方法
卷积神经网络
损伤识别
加速度
抗噪性
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 联合卷积与长短记忆神经网络的桥梁结构损伤识别研究
来源期刊 铁道科学与工程学报 学科 交通运输
关键词 桥梁健康监测 结构损伤识别 卷积神经网络 长短记忆神经网络
年,卷(期) 2020,(8) 所属期刊栏目 高速铁路技术与智慧交通
研究方向 页码范围 1893-1902
页数 10页 分类号 U446.2
字数 语种 中文
DOI 10.19713/j.cnki.43-1423/u.T20191007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨建喜 17 51 4.0 6.0
2 邹俊志 4 0 0.0 0.0
3 李韧 8 3 1.0 1.0
4 张利凯 1 0 0.0 0.0
5 何盈盈 1 0 0.0 0.0
6 蒋仕新 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (82)
共引文献  (446)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(7)
  • 参考文献(3)
  • 二级参考文献(4)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(16)
  • 参考文献(1)
  • 二级参考文献(15)
2017(11)
  • 参考文献(5)
  • 二级参考文献(6)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
桥梁健康监测
结构损伤识别
卷积神经网络
长短记忆神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
铁道科学与工程学报
月刊
1672-7029
43-1423/U
大16开
长沙市韶山南路22号
42-59
1979
chi
出版文献量(篇)
4239
总下载数(次)
13
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导