基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于实数卷积神经网络的滚动轴承故障诊断方法对振动信号幅相信息利用不充分的问题,提出一种基于复数卷积神经网络的故障诊断模型.该模型以一维振动信号经连续小波变换得到的时频复数矩阵为输入,通过复数卷积神经网络独有的复数卷积方式提取和融合信号的幅值和相位特征,并通过全连接层和Softmax实现故障诊断结果输出.结果表明:采用复数卷积神经网络模型的故障诊断方法具有更强的抗噪声鲁棒性,在添加信号噪声的不同转速工况之间能保持更好的泛化性能,可提高滚动轴承故障诊断的准确率.
推荐文章
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
基于改进的RBF神经网络的滚动轴承故障诊断
RBF神经网络
减聚类算法
故障诊断
滚动轴承
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 复数卷积神经网络滚动轴承故障诊断研究
来源期刊 中国测试 学科 工学
关键词 滚动轴承 故障诊断 连续小波变换 复数卷积神经网络
年,卷(期) 2020,(11) 所属期刊栏目 测控技术
研究方向 页码范围 109-115
页数 7页 分类号 TH165.3
字数 语种 中文
DOI 10.11857/j.issn.1674-5124.2020020057
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈春俊 112 556 12.0 19.0
2 周林春 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (131)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(8)
  • 参考文献(1)
  • 二级参考文献(7)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
故障诊断
连续小波变换
复数卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国测试
月刊
1674-5124
51-1714/TB
大16开
成都市成华区玉双路10号
26-260
1975
chi
出版文献量(篇)
4463
总下载数(次)
7
论文1v1指导