基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为准确、可靠地预测安徽省的年降水量,基于安徽省1900~2009年的均一化降水量数据集,使用信号分析技术和机器学习方法建立区域年降水量预测模型.Morlet小波分析和EEMD结果显示,研究区域历史年降水量序列大致存在3、5、20年左右的周期.为提高模型精度,建立5种输入层为3个节点、输出层为1个节点的机器学习模型,即BPNN、WANN、TSNN、SVM、ELM.按4∶1原则,将整理好的样本集中的前85组作为模型训练集,后22组作为测试集.结果 表明,5种模型表现较好,率定期的平均相对误差分别为6.1%、12.1%、14.3%、14.3%、13.2%;验证期的平均相对误差为20.6%、13.6%、12.5%、13.0%、14.3%,合格率分别为63.7%、72.7%、77.3%、77.3%、72.7%.总体来看,除BPNN模型外,其余模型均较理想,机器学习方法在非线性水文序列的模拟和预测中具有较好的适用性和可靠性.研究成果可为安徽省未来水资源规划、配置提供指导.
推荐文章
安徽省降水量空间插值研究
降水量
空间插值
安徽
华山地区降水特征分析与年降水量预测
降水特征分析
预测
滑动马尔可夫预测模型
云模型
华山地区
贵州年降水量和年最大月降水量多年一遇的极值计算
年降水量
年最大月降水量
重现期
相对均方根误差
基于降水量的白洋淀最低水位预测研究
白洋淀
降水量
最低水位
水位预测
雄安新区
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习方法的安徽省年降水量预测
来源期刊 水电能源科学 学科 工学
关键词 降水量 预测 小波分析 集合经验模态分解 机器学习
年,卷(期) 2020,(7) 所属期刊栏目 水文水资源与环境
研究方向 页码范围 5-7,41
页数 4页 分类号 TV11
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王大刚 中山大学地理科学与规划学院 14 17 3.0 3.0
2 杜懿 中山大学地理科学与规划学院 4 0 0.0 0.0
3 王大洋 中山大学地理科学与规划学院 6 0 0.0 0.0
4 龙铠豪 中山大学地理科学与规划学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (26)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(5)
  • 参考文献(0)
  • 二级参考文献(5)
2019(2)
  • 参考文献(0)
  • 二级参考文献(2)
2020(3)
  • 参考文献(0)
  • 二级参考文献(3)
2020(3)
  • 参考文献(0)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
降水量
预测
小波分析
集合经验模态分解
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导