基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高光伏发电输出功率的预测精度和可靠性,本文提出一种基于Stacking模型融合的光伏发电功率预测方法.选取某光伏电站温度、湿度、辐照度等历史实测数据为研究对象,在将光伏发电功率数据进行特征交叉以及基于模型的递归特征消除法进行预处理和特征选择的基础上,以XGBoost、LightGBM、RandomForest 3种机器学习算法作为Stacking集成学习的第一层基学习器,以LinearRegression作为第二层元学习器,构建了多个机器学习算法嵌入的Stacking模型融合的光伏发电功率预测模型.预测结果表明,该方法的R2、MSE分别达到了0.9874和0.1056,相较于单一的机器学习模型,预测精度显著提升.
推荐文章
光伏发电系统发电功率预测
光伏
功率预测
粒子群算法
核函数极限学习机
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
基于改进相似样本选取与特征提取的光伏发电功率预测方法
光伏发电功率预测
野值剔除与补正
优化相似样本
特征提取
广义回归神经网络
覆雪状态下光伏发电功率预测方法研究
光伏组件
覆雪
功率预测
蝗虫算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Stacking模型融合的光伏发电功率预测
来源期刊 计算机系统应用 学科
关键词 光伏发电 Stacking 模型融合 基学习器 元学习器
年,卷(期) 2020,(5) 所属期刊栏目 专论·综述
研究方向 页码范围 36-45
页数 10页 分类号
字数 6460字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐磊 长安大学信息工程学院 13 84 5.0 9.0
2 孙朝云 长安大学信息工程学院 78 669 13.0 23.0
3 杨荣新 长安大学信息工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (191)
共引文献  (247)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(12)
  • 参考文献(0)
  • 二级参考文献(12)
2010(14)
  • 参考文献(0)
  • 二级参考文献(14)
2011(24)
  • 参考文献(0)
  • 二级参考文献(24)
2012(20)
  • 参考文献(2)
  • 二级参考文献(18)
2013(34)
  • 参考文献(0)
  • 二级参考文献(34)
2014(18)
  • 参考文献(0)
  • 二级参考文献(18)
2015(23)
  • 参考文献(3)
  • 二级参考文献(20)
2016(18)
  • 参考文献(2)
  • 二级参考文献(16)
2017(16)
  • 参考文献(4)
  • 二级参考文献(12)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光伏发电
Stacking
模型融合
基学习器
元学习器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导