基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着高分辨率遥感图像越来越普及,传统的面向像元的图像分类方法不能满足对高分辨率遥感图像区域分类的需求,高分辨率遥感图像对图像处理的软件与硬件都有了更高的要求,因此,出现了相较于面向像元有着更高精度更为合理的面向对象分类方法,也更加适用于高分辨率遥感影像.本文通过采用面向对象分类的基本方法,运用eCognition软件,以山东省胶州市地区遥感影像为例,进行多尺度分割和面向对象分类.并用ENVI做监督分类,基于目视解译精度评定,对不同方法作出分析评价.结果 表明:面向对象分类方法精度更高,更具有可靠性.
推荐文章
基于GF-2遥感影像的面向对象分类方法比较研究
GF-2遥感影像
K-最近邻分类
支持向量机分类
CART决策树分类
面向对象的遥感影像单类分类
单类分类
面向对象技术
遥感影像
支持向量机
基于面向对象分类技术的小流域土壤侵蚀遥感监测方法研究
土壤侵蚀
遥感监测
面向对象分类
小流域
土地利用
植被覆盖度
基于eCognition的高分辨率遥感影像道路自动提取方法
遥感影像
eCognition
道路提取
多尺度分割算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于eCognition的遥感图像面向对象分类方法研究
来源期刊 测绘与空间地理信息 学科 地球科学
关键词 eCognition 多尺度分割 遥感图像 面向对象 胶州地区分类
年,卷(期) 2020,(2) 所属期刊栏目 3S技术与应用
研究方向 页码范围 91-95
页数 5页 分类号 P237
字数 3399字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张继超 辽宁工程技术大学测绘与地理科学学院 23 132 8.0 11.0
2 陈蕊 辽宁工程技术大学测绘与地理科学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (74)
共引文献  (405)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(10)
  • 参考文献(2)
  • 二级参考文献(8)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(8)
  • 参考文献(2)
  • 二级参考文献(6)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
eCognition
多尺度分割
遥感图像
面向对象
胶州地区分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘与空间地理信息
月刊
1672-5867
23-1520/P
大16开
哈尔滨市南岗区测绘路32号
14-5
1978
chi
出版文献量(篇)
11361
总下载数(次)
46
总被引数(次)
45485
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导