人脸认证是电力系统网络安全访问的重要方式,而人脸检测是人脸认证系统的重要环节,传统Adaboost模式的人脸检测虽然速度快,但是准确率低;深度学习方式的检测准确率高,但是检测速度慢.针对电力系统网络访问特点,提出了一种基于深度学习的SRPN(single region proposal net)实时人脸检测方法.该方法利用深度学习强大的特征自动提取能力,同时针对电力系统网络访问进行网络模型设计,减少模型计算量,加快检测速度.实际应用结果表明,该模型在保证高准确率的情况下,在CPU上达到了30FPS的实时速度,明显优于AdaBoost传统人脸检测的准确率和检测速度.