基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将局部行人再识别中的局部图像与整体图像直接进行比较会产生严重的空间错位,从而导致无法检测到正确目标.针对相同尺寸的行人局部图像与全局图像不匹配问题,提出姿态引导对齐网络(PGAN)模型,将姿态作为辅助信息引入到姿态引导的空间变换模块中,从局部图像与整体图像中提取仿射变换后的行人图像并将其与标准姿态进行对齐,再利用卷积神经网络学习相关特征实现局部行人再识别.实验结果表明,在Partial-REID数据集上PGAN模型取得65%的Rank-1准确率,相比直接使用深度卷积神经网络提取全局特征进行匹配的基准模型提高了3.7%,从而证明其具有良好的局部图像对齐能力及行人再识别效果.
推荐文章
基于局部深度匹配的行人再识别
行人再识别
分块匹配
可变部件模型
深度神经网络
基于韦伯局部算子和颜色特征的行人再识别
韦伯局部算子
行人再识别
特征融合
HSV
差分激励
方向分量
基于提升方法的多度量行人再识别
行人再识别
特征表达
度量学习
提升方法
距离融合
公共数据集
基于辨识特征后融合的行人再识别
行人再识别
多特征融合
距离度量学习
距离融合
最小最大标准化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于姿态引导对齐网络的局部行人再识别
来源期刊 计算机工程 学科 工学
关键词 局部行人再识别 对齐网络 空间变换 姿态 深度卷积神经网络
年,卷(期) 2020,(5) 所属期刊栏目 图形图像处理
研究方向 页码范围 247-253
页数 7页 分类号 TP311
字数 5521字 语种 中文
DOI 10.19678/j.issn.1000-3428.0056642
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵杰煜 宁波大学信息科学与工程学院 82 637 14.0 21.0
2 王翀 宁波大学信息科学与工程学院 3 1 1.0 1.0
3 郑烨 宁波大学信息科学与工程学院 4 0 0.0 0.0
4 张毅 宁波大学信息科学与工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
局部行人再识别
对齐网络
空间变换
姿态
深度卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导