基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统遥感影像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,本文提出了一种基于密集卷积神经网络的遥感影像超分辨率重建的方法.该网络直接将低分辨率遥感影像作为网络的初始输入,通过密集卷积神经网络学习影像的高阶表示,获得更具有表达能力的深层特征;同时,在网络中采用并行的1×1卷积滤波器结构,通过该结构减少模型参数;在重建网络中使用亚像素卷积可以更快地实现特征图的重建.在UCMerced_LandUse公共数据集上的实验表明:本文的网络模型提升了传统深度网络的影像重建性能,增强了重建图像的纹理细节并改善影像边缘失真,提升了重建影像的性能.
推荐文章
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于深度复合卷积神经网络的低分辨率单影像复原
超低分辨率图像
卷积神经网络
单影像复原
基于改进卷积神经网络的图像超分辨率算法研究
低分辨率
超分辨率
卷积神经网络
图像处理
复原
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建
深度图像
超分辨率重建
双通道卷积神经网络
金字塔式网络结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密集卷积神经网络的遥感影像超分辨率重建
来源期刊 测绘与空间地理信息 学科 地球科学
关键词 遥感影像 超分辨率重建 密集卷积网络 并行卷积神经网络 亚像素卷积
年,卷(期) 2020,(8) 所属期刊栏目 博士园地
研究方向 页码范围 4-8
页数 5页 分类号 P237
字数 3152字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王植 东北大学资源与土木工程学院 29 145 7.0 11.0
2 李安翼 东北大学资源与土木工程学院 2 0 0.0 0.0
3 方锦雄 东北大学资源与土木工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (49)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(10)
  • 参考文献(1)
  • 二级参考文献(9)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感影像
超分辨率重建
密集卷积网络
并行卷积神经网络
亚像素卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘与空间地理信息
月刊
1672-5867
23-1520/P
大16开
哈尔滨市南岗区测绘路32号
14-5
1978
chi
出版文献量(篇)
11361
总下载数(次)
46
总被引数(次)
45485
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导