基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
命名实体识别是自然语言处理的一项关键技术.基于深度学习的方法已被广泛应用到中文实体识别研究中.大多数深度学习模型的预处理主要注重词和字符的特征抽取,却忽略词上下文的语义信息,使其无法表征一词多义,因而实体识别性能有待进一步提高.为解决该问题,本文提出了一种基于BERT-BiLSTM-CRF模型的研究方法.首先通过BERT模型预处理生成基于上下文信息的词向量,其次将训练出来的词向量输入BiLSTM-CRF模型做进一步训练处理.实验结果表明,该模型在MSRA语料和人民日报语料库上都达到相当不错的结果,F1值分别为94.65% 和95.67%.
推荐文章
融合语句-实体特征与Bert的中文实体关系抽取模型
自然语言处理
关系抽取
深度学习
BERT
Transformer
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
基于BiLSTM-CRF的商情实体识别模型
条件随机场
双向长短时记忆网络
语言模型
命名实体识别
深度学习
基于BiLSTM-CNN-CRF模型的维吾尔文命名实体识别
递归神经网络
卷积神经网络
条件随机场
维吾尔文
命名实体识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BERT-BiLSTM-CRF模型的中文实体识别
来源期刊 计算机系统应用 学科
关键词 命名实体识别 BERT模型 双向长短期记忆网络 条件随机场 词向量
年,卷(期) 2020,(7) 所属期刊栏目 专论·综述
研究方向 页码范围 48-55
页数 8页 分类号
字数 6497字 语种 中文
DOI 10.15888/j.cnki.csa.007525]
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨俊安 国防科技大学电子对抗学院 15 18 2.0 3.0
2 刘辉 国防科技大学电子对抗学院 22 58 4.0 7.0
3 谢腾 国防科技大学电子对抗学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (87)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
命名实体识别
BERT模型
双向长短期记忆网络
条件随机场
词向量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
相关基金
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
论文1v1指导