基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
行人重识别是计算机视觉的热门研究方向,其对智能安防、视频监控的发展有着重大意义.目前大部分工作主要集中在研究基于可见光的行人重识别,然而可见光摄像头无法在光线不足的黑夜中正常使用,而新型摄像头能够随机切换红外模式进行24小时视频监控,因此最近有一些工作对RGB-IR跨模态行人重识别问题进行了研究.本文分别从定义、研究难点和发展现状介绍了跨模态行人重识别问题,并根据不同的技术类型将目前存在的方法分为三类,即基于统一特征模型的方法;基于度量学习的方法;基于模态转换的方法.本文也详细介绍了该任务的数据集和评价准则,并对现有算法的性能进行分析与归纳.最后,总结了跨模态行人重识别的未来发展方向.
推荐文章
基于卷积注意力机制和多损失联合的跨模态行人重识别
跨模态行人重识别
深度学习
卷积注意力机制
多损失联合
行人重识别现状与发展趋势研究
行人重识别
人脸识别
人工智能
认知水平
基于生成对抗网络的跨模态行人重识别研究
生成对抗网络
行人重识别
跨模态
基于深度学习的行人重识别研究综述
行人重识别
监督学习
半监督学习
弱监督学习
无监督学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 跨模态行人重识别研究与展望
来源期刊 计算机系统应用 学科
关键词 跨模态行人重识别 红外图像 统一特征模型 度量学习 模态转换
年,卷(期) 2020,(10) 所属期刊栏目 专论·综述
研究方向 页码范围 20-28
页数 9页 分类号
字数 语种 中文
DOI 10.15888/j.cnki.csa.007621
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (8)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(11)
  • 参考文献(3)
  • 二级参考文献(8)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
跨模态行人重识别
红外图像
统一特征模型
度量学习
模态转换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导