基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
检测恶意URL对防御网络攻击有着重要意义.针对有监督学习需要大量有标签样本这一问题,本文采用半监督学习方式训练恶意URL检测模型,减少了为数据打标签带来的成本开销.在传统半监督学习协同训练(co-training)的基础上进行了算法改进,利用专家知识与Doc2Vec两种方法预处理的数据训练两个分类器,筛选两个分类器预测结果相同且置信度高的数据打上伪标签(pseudo-labeled)后用于分类器继续学习.实验结果表明,本文方法只用0.67% 的有标签数据即可训练出检测精确度(precision)分别达到99.42% 和95.23% 的两个不同类型分类器,与有监督学习性能相近,比自训练与协同训练表现更优异.
推荐文章
基于半监督学习的应用流分类方法
流量分类
半监督学习
特征选择
基于半监督学习的自动驾驶场景下的目标检测
目标检测
自动驾驶
注意力机制
特征融合
半监督学习
基于半监督学习的一种图像检索方法
基于内容的图像检索
半监督学习
图像特征
相关度
查准率—查全率曲线
一种基于半监督学习的应用层流量分类方法
流量分类
半监督学习
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于半监督学习的恶意URL检测方法
来源期刊 计算机系统应用 学科
关键词 恶意URL检测 半监督学习 协同训练改进算法 Doc2Vec 分类器训练
年,卷(期) 2020,(11) 所属期刊栏目 专论·综述
研究方向 页码范围 11-20
页数 10页 分类号
字数 语种 中文
DOI 10.15888/j.cnki.csa.007461
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘雪娇 5 5 1.0 2.0
2 麻瓯勃 1 0 0.0 0.0
3 唐旭栋 1 0 0.0 0.0
4 周宇轩 1 0 0.0 0.0
5 胡亦承 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (56)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(2)
  • 二级参考文献(5)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(8)
  • 参考文献(3)
  • 二级参考文献(5)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(9)
  • 参考文献(1)
  • 二级参考文献(8)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
恶意URL检测
半监督学习
协同训练改进算法
Doc2Vec
分类器训练
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导