基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着现代科技的迅猛发展,数据中心已经成为信息化社会的IT基础设施,存储管理大量关键数据.当前,数据中心的管理大多是依靠经验丰富的专业运维人员使用计算机自动监测机房设备各项指标,并对设备做出多次检查,耗时且繁琐.深度学习和人工智能技术当前吸引了越来越多的注意力,并在互联网和工业领域取得了许多成功应用.本文设计了基于门控循环单元的深度学习框架对云数据中心机房设备故障进行自动化的诊断,并联合时序信息基于过去设备的运行状态信息对未来状态进行预测.其中,序列数据以固定时间窗分割后输入双向GRU单元层,使网络学习到数据点的前后时间依赖关系.在GRU层输出基础上,我们添加了自注意力层和embedding层,让神经网络能够学习到对故障预测更有效的特征并进一步对特征进行降维.最后,多层感知机被用于对降维后的数据进行分类.基于真实数据集的实验结果显示,本文提出的基于GRU的深度学习框架相比LSTM,SVM和KNN等常用模型能够更准确地检测出云数据中心故障.
推荐文章
基于长短期记忆神经网络的数据中心空调系统传感器故障诊断
故障检测与诊断
数据中心
传感器故障
长短期记忆神经网络
算法
模型
云数据中心网络技术浅析
云计算
IDC
虚拟化感知
二层多路径
网络虚拟化
网络融合
云数据中心网络虚拟化技术实现及应用
数据中心
云计算
网络虚拟化
跨数据中心互联
基于一种改进的云神经网络涡扇发动机故障诊断
航空发动机
云模型
云神经网络
自适应遗传算法
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Pytorch和神经网络的云数据中心故障检测
来源期刊 计算机系统应用 学科
关键词 循环神经网络 云数据中心 硬件故障诊断
年,卷(期) 2020,(11) 所属期刊栏目 专论·综述
研究方向 页码范围 40-46
页数 7页 分类号
字数 语种 中文
DOI 10.15888/j.cnki.csa.007666
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (101)
共引文献  (113)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(14)
  • 参考文献(1)
  • 二级参考文献(13)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(13)
  • 参考文献(1)
  • 二级参考文献(12)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(9)
  • 参考文献(4)
  • 二级参考文献(5)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
循环神经网络
云数据中心
硬件故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导