作者:
原文服务方: 计算机测量与控制       
摘要:
脑电信号的非线性、非平稳性造成对运动想象脑电信号的分类识别存在特征提取困难、可区分性低以及分类识别性能差等问题;文章提出一种基于经验模态分解(empirical mode decomposition,EMD)和支撑向量机(support vector machine,SVM)的运动想象脑电信号分类方法,充分利用EMD算法在处理非线性、非平稳信号的自适应性以及SVM在小样本条件的高识别性能和强泛化能力;首先利用EMD算法将C3、C4导联信号分解为一系列本征模函数(intrinsic mode function,IMF),然后从IMF的信息和能量等维度提取特征将脑电信号转换至区分性更强的特征域,最后利用SVM进行分类识别;采用国际BCI竞赛2003中的Graz数据进行验证,所提方法可以得到94.6%的正确识别率,为在线脑-机接口系统的研究提供了新的思路.
推荐文章
基于固有模态分解和深度学习的抑郁症脑电信号分类分析
抑郁症
脑电信号
固有模态分解
固有模态函数
卷积神经网络
基于ABC-SVM的运动想象脑电信号模式分类
脑电信号
人工蜂群算法
支持向量机
正则化共空间模式
模式分类
基于改进的经验模态方法脑电信号分解
经验模态分解
欠冲现象
脑电信号
包络线拟合
基于波形特征和SVM的心电信号自动分类方法研究
波形特征
支持向量机(SVM)
自动分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于经验模态分解和SVM的脑电信号分类方法
来源期刊 计算机测量与控制 学科
关键词 脑电信号分类 经验模态分解 支撑向量机 特征提取
年,卷(期) 2020,(1) 所属期刊栏目 设计与应用
研究方向 页码范围 189-194
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2020.01.040
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭仁旺 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (100)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(6)
  • 参考文献(1)
  • 二级参考文献(5)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(6)
  • 参考文献(2)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(12)
  • 参考文献(0)
  • 二级参考文献(12)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(10)
  • 参考文献(3)
  • 二级参考文献(7)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电信号分类
经验模态分解
支撑向量机
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导