基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文本情感分析是自然语言处理领域的一大研究方向.文本情感分析本质上属于文本二分类问题,问题的核心是将一段文本所表达的情感分为正向和负向两类.传统的文本分类算法在进行文本情感分析时,不能很好地考虑到词与词之间的关联性以及词语之间的极性转移.针对LSTM神经网络模型在文本情感分析中的不足,设计并提出了基于改进型LSTM的文本情感分析模型.为了降低在原始LSTM模型中采用随机梯度下降法进行参数更新所带来的不确定性,提出一种基于向量空间的伪梯度下降法.在迭代过程中,为了减轻模型准确率的振荡现象,提出带有修正项的二元交叉熵损失函数,使改进后的模型有选择性地针对分类模糊的数据进行更新.实验结果表明,改进后的模型在分类正确率以及迭代效率上有所改进.
推荐文章
基于LSTM的评论文本情感分析方法研究
文本情感分析
LSTM长短时记忆神经网络
卷积神经网络
词嵌入技术
基于改进型卷积神经网络和行特征的文本检测
文本检测
最大稳定极值区域
卷积神经网络
行特征
C4.5决策树算法
基于深层注意力的LSTM的特定主题情感分析
特定主题情感分析
深层注意力
LSTM
深度学习
自然语言处理
基于ConvLSTM模型的短文本情感分类研究
短文本
情感分类
CNN
LSTM
ConvLSTM模型
深度学习模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进型LSTM的文本情感分析模型研究
来源期刊 计算机技术与发展 学科 工学
关键词 文本情感分析 机器学习 长短期记忆模型 梯度下降 损失函数
年,卷(期) 2020,(12) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 40-44
页数 5页 分类号 TP315
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.12.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (94)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(12)
  • 参考文献(0)
  • 二级参考文献(12)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(10)
  • 参考文献(1)
  • 二级参考文献(9)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(6)
  • 参考文献(6)
  • 二级参考文献(0)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本情感分析
机器学习
长短期记忆模型
梯度下降
损失函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导