基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
金属氧化物避雷器(MOA)老化后,会丧失对过电压的抑制力,从而使电气设备暴露在过电压的危险下,因此及时了解MOA老化情况,对于电力系统设备的安全、可靠运行十分重要.在此背景下,提出了引入随机失活技术的长短期记忆网络(LSTM)避雷器阻性电流预测方法,来判断MOA的老化趋势,该方法能有效避免深度学习的过拟合问题并改善网络性能.采用某变电站避雷器数据对所提方法进行训练,结果表明所提出的深度LSTM算法与BP神经网络、循环神经网络相比精度显著提升,预测结果的均方误差在4.3%左右.
推荐文章
基于阻容网络的避雷器阻性电流计算方法研究
氧化锌避雷器
阻容网络
有限元仿真
交流高压试验
特高压站避雷器泄漏电流在线监测和分析系统
特高压
避雷器
缺陷预警
泄漏电流
时间序列
LoRa
不同雷电侵入方式下线路避雷器放电电流分析
线路避雷器
雷电冲击
标称放电电流
避雷器放电电流
基于智能监测器的避雷器状态诊断系统
金属氧化物避雷器
智能监测器
蓝牙通讯
在线诊断系统
避雷器状态检修
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于随机失活LSTM网络的避雷器阻性电流预测方法
来源期刊 水电能源科学 学科
关键词 金属氧化物避雷器 阻性电流 深度学习 长短期记忆网络
年,卷(期) 2020,(10) 所属期刊栏目 电气工程
研究方向 页码范围 159-162,98
页数 5页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (41)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
金属氧化物避雷器
阻性电流
深度学习
长短期记忆网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导