原文服务方: 计算机测量与控制       
摘要:
针对传统障碍物检测中的立体匹配算法存在特征提取不充分,在复杂场景和光照变化明显等区域存在误匹配率较高,算法所获视差图精度较低等问题,提出了一种基于多尺度卷积神经网络的立体匹配方法;首先,在匹配代价计算阶段,建立了一种基于多尺度卷积神经网络模型,采用多尺度卷积神经网络捕获图像的多尺度特征;为增强模型的抗干扰和快速收敛能力,在原有损失函数中提出改进,使新的损失函数在训练时可以由一正一负两个样本同时进行训练,缩短了模型训练时间;其次,在代价聚合阶段,构造一个全局能量函数,将二维图像上的最优问题分解为4个方向上的一维问题,利用动态规划的思想,得到最优视差;最后,通过左右一致性检测对所得视差进行进一步精化,得到最终视差图;在Middlebury数据集提供的标准立体匹配图像测试上进行了对比实验,经过实验验证算法的平均误匹配率为4.94%,小于对比算法中的实验结果,并提高了在光照变化明显以及复杂区域的匹配精度,得到了高精度视差图.
推荐文章
基于径向基神经网络的立体匹配算法
立体匹配
尺度不变特征变换
径向基函数
特征匹配向量
立体匹配算法研究综述
立体匹配
全局立体匹配
局部立体匹配
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度卷积神经网络的立体匹配算法研究
来源期刊 计算机测量与控制 学科
关键词 多尺度 卷积神经网络 匹配代价 代价聚合
年,卷(期) 2020,(9) 所属期刊栏目 设计与应用
研究方向 页码范围 206-211
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2020.09.041
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (196)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(9)
  • 参考文献(2)
  • 二级参考文献(7)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多尺度
卷积神经网络
匹配代价
代价聚合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导