基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对典型仿生智能算法处理木材缺陷图像精确识别及最优分割问题时存在的多维退化因素作用下的缺陷图像失真严重、缺陷图像先验特征提取方差波动频繁、质地不均匀缺陷图像灰度分割失效、异种木材自身纹理泛化能力与学习能力失衡、最优收敛速度随缺陷维度呈迟滞变化等先天不足,提出了一种基于深度强化学习的木材缺陷图像识别及分割模型.引入深度学习机制,利用深度卷积神经网络进行迭代训练,实现差异性木材多维缺陷图像特征实时高效提取,构建面向差异性木材多维缺陷精细分割与特征提取的全景自主感知模型,构建大数据量级木材缺陷特征共享资源池;引入强化学习机制,利用双重Q网络机制建立缺陷特征迭代更新、自主决策、全景可视、深度预测与缺陷图像识别之间的高维度决策映射,实现多维差异性木材缺陷图像精确识别及最优分割的横向共享集成.基于PyTorch开源框架,在Gym Torcs环境下进行模型效能仿真验证,较好解决了典型仿生智能算法处理木材缺陷图像精确识别及最优分割问题时存在的若干固有缺陷,实现木材缺陷图像精确识别及最优分割,具有缺陷特征感知全面、抗干扰性强、自主决策性高等优势.以浙江省湖州市南湖林场辖区内某经济林木为效能评价载体,对模型进行了工程应用分析,验证结果表明所提模型可以较好实现木材缺陷图像精确识别及最优分割,在感知自主性、最优收敛速度、分割全局最优性、缺陷图像保真度等方面具有明显优势.
推荐文章
基于深度学习的图像识别技术研究综述
图像识别
CNN
R-CNN
SPP-Net
FastR-CNN
基于深度学习的木材缺陷图像检测方法
深度学习
卷积神经网络
区域建议网络
木材缺陷图像
CV
基于多模型融合的木材表面缺陷图像快速识别1)
木材缺陷
图像识别
全局最小化
全变分范数对偶化
基于分数阶CV模型的木材缺陷图像分割算法
分数阶
CV
PCA
木材缺陷图像
图像分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度强化学习的木材缺陷图像识别及分割模型研究
来源期刊 电子测量技术 学科
关键词 木材缺陷检测 图像识别 深度强化学习 最优分割 仿真及工程效能分析
年,卷(期) 2020,(17) 所属期刊栏目 理论与算法|Theory and Algorithms
研究方向 页码范围 80-86
页数 7页 分类号 TP181
字数 语种 中文
DOI 10.19651/j.cnki.emt.2004557
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (220)
共引文献  (13)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(12)
  • 参考文献(0)
  • 二级参考文献(12)
2014(17)
  • 参考文献(0)
  • 二级参考文献(17)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(20)
  • 参考文献(0)
  • 二级参考文献(20)
2017(38)
  • 参考文献(0)
  • 二级参考文献(38)
2018(48)
  • 参考文献(2)
  • 二级参考文献(46)
2019(29)
  • 参考文献(10)
  • 二级参考文献(19)
2020(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(4)
  • 参考文献(4)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
木材缺陷检测
图像识别
深度强化学习
最优分割
仿真及工程效能分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量技术
半月刊
1002-7300
11-2175/TN
大16开
北京市东城区北河沿大街79号
2-336
1977
chi
出版文献量(篇)
9342
总下载数(次)
50
总被引数(次)
46785
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导