原文服务方: 计算机应用研究       
摘要:
针对有监督的深度神经网络文本生成模型容易造成错误累积的问题,提出一种基于强化对抗思想训练的文本生成模型.通过将生成对抗网络鉴别器作为强化学习的奖励函数及时指导生成模型优化,尽量避免错误累积;通过在生成过程中加入目标指导特征帮助生成模型获取更多文本结构知识,提升文本生成模型真实性.在合成数据和真实数据集上的实验结果表明,该方法在文本生成任务中,较之前的文本生成模型在准确率和真实性上有了进一步的提高,验证了加入目标指导的强化对抗文本生成方法的有效性.
推荐文章
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
对抗样本生成及攻防技术研究
对抗样本
机器学习
深度学习
不均衡数据集文本分类中少数类样本生成方法研究
不均衡数据集
分类
聚类
遗传算法
样本生成
基于CNN和DLTL的步态虚拟样本生成方法
步态识别
卷积神经网络
对偶学习和迁移学习
虚拟样本
步态识别率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 加入目标指导的强化对抗文本生成方法研究
来源期刊 计算机应用研究 学科
关键词 文本生成 强化学习 生成对抗网络 目标指导
年,卷(期) 2020,(11) 所属期刊栏目 算法研究探讨
研究方向 页码范围 3343-3346,3352
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.07.0265
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张志远 17 31 4.0 5.0
2 李媛媛 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (2)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本生成
强化学习
生成对抗网络
目标指导
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导