作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对柔性材料卷对卷设备的性能衰退问题,提出了一种LSTM-SVM性能衰退预测模型.通过分析LSTM网络和SVM网络的数学原理,构建了LSTM-SVM网络模型,并根据实验对象及实验数据的特点,设置了性能衰退预测模型的关键参数.最后,将110组长度为1000个数据点的轴承振动数据作为输入来训练网络模型.通过实验发现,LSTM-SVM模型有效预测了卷对卷设备的性能衰退情况,成功划分了设备的健康状态,准确度为0.535,拟合情况良好,表明该模型在卷对卷设备性能衰退预测方面具有可行性.损失值在模型训练到第7次时收敛,其学习速率比一般的LSTM模型更快.结果表明,LSTM-SVM模型在处理大量数据方面比LSTM模型更具有优势.
推荐文章
基于LSTM模型的短期负荷预测
短期负荷预测
LSTM神经网络
工业用户
深度学习
基于LSTM模型的单导联脑电癫痫发作预测
癫痫发作预测
单导联
小波能量
长短时程记忆网络
智能组卷系统中人工干预组卷功能的实现
VB
ADO
智能组卷
人工干预组卷
基于LSTM变权组合模型的股价预测
GRA
PCA
LSTM
误差倒数变权组合预测法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LSTM-SVM的卷对卷系统预测性维护模型
来源期刊 机电工程技术 学科 工学
关键词 LSTM-SVM模型 卷对卷 性能衰退 健康状态
年,卷(期) 2020,(11) 所属期刊栏目 研究与开发
研究方向 页码范围 112-115
页数 4页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1009-9492.2020.11.032
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄冠泽 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (73)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LSTM-SVM模型
卷对卷
性能衰退
健康状态
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机电工程技术
月刊
1009-9492
44-1522/TH
大16开
广州市天河北路663号
46-224
1971
chi
出版文献量(篇)
11098
总下载数(次)
46
总被引数(次)
29526
论文1v1指导