基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Network embedding aims at learning low-dimensional representation of vertexes in a network and effectively pre-serving network structures.These representations can be used as features for many complex tasks on networks such as community detection and multi-label classification.Some classic methods based on the skip-gram model have been pro-posed to learn the representation of vertexes.However,these methods do not consider the global structure(i.e.,community structure)while sampling vertex sequences in network.To solve this problem,we suggest a novel sampling method which takes community information into consideration.It first samples dense vertex sequences by taking advantage of modularity function and then learns vertex representation by using the skip-gram model.Experimental results on the tasks of commu-nity detection and multi-label classification show that our method outperforms three state-of-the-art methods on learning the vertex representations in networks.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
基于情感计算的E-Learning模型框架
情感计算
E-Learning
和谐人机环境
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Modularity-based representation learning for networks
来源期刊 中国物理B(英文版) 学科
关键词
年,卷(期) 2020,(12) 所属期刊栏目 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
研究方向 页码范围 663-670
页数 8页 分类号
字数 语种 英文
DOI 10.1088/1674-1056/abbbec
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导