原文服务方: 现代电子技术       
摘要:
在医院网络非法入侵检测中,支持向量机的检测泛化性能和参数设定存在较高关联性.为了提升医院网络非法入侵检测率,设计一种基于蚁群优化算法和支持向量机相结合的医院网络非法入侵检测模型,把支持向量机参数设成蚂蚁的方位向量,使用非静止随机提取方法判断目标个体指引蚁群实施全局检索,并在最佳蚂蚁邻域里实施小步长局部检索,获取支持向量机最佳参数,使用最佳参数实现医院网络非法入侵检测.实验结果表明,所设计模型对医院网络非法入侵的误检率最大值仅有1.55%,检测耗时低,且应用效果评价较高.
推荐文章
改进蚁群算法优化支持向量机的网络入侵检测
网络入侵
蚁群优化算法
支持向量机
参数优化
基于萤火虫群优化支持向量机的网络入侵检测方法
入侵检测
支持向量机
萤火虫群
分类面修正
蚁群算法优化支持向量机的人脸识别
蚁群算法
人脸识别
支持向量机
特征检测
基于支持向量机和蚁群算法的空间目标分类
空间目标
支持向量机
蚁群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蚁群优化算法和支持向量机相结合的医院网络非法入侵检测
来源期刊 现代电子技术 学科
关键词 医院网络 非法入侵检测 蚁群优化算法 支持向量机 入侵检测模型 全局搜索
年,卷(期) 2020,(22) 所属期刊栏目 计算机科学与应用
研究方向 页码范围 78-81
页数 4页 分类号 TN915.08-34|TP393
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2020.22.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (151)
共引文献  (43)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(12)
  • 参考文献(0)
  • 二级参考文献(12)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(13)
  • 参考文献(0)
  • 二级参考文献(13)
2012(12)
  • 参考文献(0)
  • 二级参考文献(12)
2013(14)
  • 参考文献(0)
  • 二级参考文献(14)
2014(15)
  • 参考文献(0)
  • 二级参考文献(15)
2015(15)
  • 参考文献(0)
  • 二级参考文献(15)
2016(17)
  • 参考文献(6)
  • 二级参考文献(11)
2017(9)
  • 参考文献(0)
  • 二级参考文献(9)
2018(7)
  • 参考文献(3)
  • 二级参考文献(4)
2019(5)
  • 参考文献(4)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
医院网络
非法入侵检测
蚁群优化算法
支持向量机
入侵检测模型
全局搜索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导