基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose: This paper aims to improve the classification performance when the data is imbalanced by applying different sampling techniques available in Machine Learning.Design/methodology/approach: The medical appointment no-show dataset is imbalanced, and when classification algorithms are applied directly to the dataset, it is biased towards the majority class, ignoring the minority class. To avoid this issue, multiple sampling techniques such as Random Over Sampling(ROS), Random Under Sampling(RUS), Synthetic Minority Oversampling TEchnique(SMOTE), ADAptive SYNthetic Sampling(ADASYN), Edited Nearest Neighbor(ENN), and Condensed Nearest Neighbor(CNN) are applied in order to make the dataset balanced. The performance is assessed by the Decision Tree classifier with the listed sampling techniques and the best performance is identified.Findings: This study focuses on the comparison of the performance metrics of various sampling methods widely used. It is revealed that, compared to other techniques, the Recall is high when ENN is applied CNN and ADASYN have performed equally well on the Imbalanced data.Research limitations: The testing was carried out with limited dataset and needs to be tested with a larger dataset.Practical implications: This framework will be useful whenever the data is imbalanced in real world scenarios, which ultimately improves the performance.Originality/value: This paper uses the rebalancing framework on medical appointment no-show dataset to predict the no-shows and removes the bias towards minority class.
推荐文章
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
Guizhou Province, China: the birthplace of modern Medical Geology
Coal
Fluorosis
Arsenic poisoning
Selenosis
Health impacts
Environmental health
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Rebalancing Framework for Classification of Imbalanced Medical Appointment No-show Data
来源期刊 数据与情报科学学报:英文版 学科 工学
关键词 Imbalanced data Sampling methods Machine learning CLASSIFICATION
年,卷(期) sjyqbkxxbywb_2021,(1) 所属期刊栏目
研究方向 页码范围 178-192
页数 15页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Imbalanced
data
Sampling
methods
Machine
learning
CLASSIFICATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
论文1v1指导