基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对傅里叶分解对噪声敏感且存在模态混叠导致无法准确提取齿轮箱故障特征的问题,提出了一种复合字典降噪与优化傅里叶分解相结合的齿轮箱故障特征提取方法.首先,根据齿轮箱信号特点构造复合字典,结合正交匹配追踪算法降低振动信号中的噪声;其次,针对傅里叶分解过程中的模态混叠现象,提出了利用频谱的极值点划分频带的方法对其进行优化,提高分解质量;再次,使用优化的傅里叶分解将信号分解为若干个傅里叶本征模态分量;最后,选择与降噪后信号相关系数最大的傅里叶本征模态分量进行包络谱分析.该方法可以准确提取振动信号的故障特征频率.通过对齿轮箱故障仿真信号和实验齿轮箱振动信号进行分析,验证了该方法的有效性.
推荐文章
基于参数优化VMD的齿轮箱故障特征提取方法
变分模态分解
参数优化
果蝇优化算法
齿轮箱
故障特征提取
基于傅里叶分解方法的风电齿轮箱故障诊断
傅里叶分解方法
经验模式分解
风电齿轮箱
故障诊断
基于CPFs的齿轮箱复合故障特征提取
复合故障
局部均值分解
组合乘积函数
最优最小熵反褶积
基于提高变分模态分解的齿轮箱复合故障特征提取
故障检测
齿轮箱
最小熵反褶积
变分模态分解
多故障
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于复合字典降噪和优化傅里叶分解的齿轮箱故障特征提取方法
来源期刊 东南大学学报(英文版) 学科
关键词 傅里叶分解 复合字典 模态混叠 齿轮箱故障 特征提取
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 22-32
页数 11页 分类号 TH17
字数 语种 英文
DOI 10.3969/j.issn.1003-7985.2021.01.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (2)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
傅里叶分解
复合字典
模态混叠
齿轮箱故障
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(英文版)
季刊
1003-7985
32-1325/N
大16开
南京四牌楼2号
1984
eng
出版文献量(篇)
2004
总下载数(次)
1
总被引数(次)
8843
论文1v1指导