基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A substantial body of work has been done to identify network anomalies using supervised and unsupervised learning techniques with their unique strengths and weaknesses.In this work,we propose a new approach that takes advantage of both worlds of unsupervised and supervised learnings.The main objective of the proposed approach is to enable supervised anomaly detection without the provision of the associated labels by users.To this end,we estimate the labels of each connection in the training phase using clustering.The "estimated" labels are then utilized to establish a supervised learning model for the subsequent classification of connections in the testing stage.We set up a new property that defines anomalies in the context of network anomaly detection to improve the quality of estimated labels.Through our extensive experiments with a public dataset (NSL-KDD),we will prove that the proposed method can achieve performance comparable to one with the "original" labels provided in the dataset.We also introduce two heuristic functions that minimize the impact of the randomness of clustering to improve the overall quality of the estimated labels.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Clustering-based label estimation for network anomaly detection
来源期刊 数字通信与网络(英文版) 学科
关键词
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 37-44
页数 8页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
数字通信与网络(英文)
季刊
2352-8648
50-1212/TN
重庆市南岸区崇文路2号
eng
出版文献量(篇)
129
总下载数(次)
0
总被引数(次)
9
论文1v1指导