基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Modeling of fluids with complex rheology in the lattice Boltzmann method (LBM) is typically realized through the introduction of an effective viscosity. For fluids with a yield stress behavior, such as so-called Bingham fluids, the effective viscosity has a singularity for low shear rates and may become negative. This is typically avoided by regularization such as Papanastasiou’s method. Here we argue that the effective viscosity model can be re-interpreted as a generalized equilibrium in which no violation of the stability constraint is observed. We implement a Bingham fluid model in a three-dimensional cumulant lattice Boltzmann framework and compare the direct analytic effective viscosity/generalized equilibrium method to the iterative approach first introduced by Vikhansky which avoids the singularity in viscosity that can arise in the analytic method. We find that both methods obtain similar results at coarse resolutions. However, at higher resolutions the accuracy of the regularized method levels off while the accuracy of the direct method continuously improves. We find that the accuracy of the proposed direct method is not limited by the singularity in viscosity indicating that a regularization is not strictly necessary.
推荐文章
基于Lattice Boltzmann方法的翼型绕流数值模拟
Lattice Boltzmann
非均匀
贴体网格
低雷诺数
翼型
直接计算压力场的Lattice Boltzmann模型
流场
Lattice Boltzmann方法
模拟
压力
高可扩展格子Boltzmann方法
格子Boltzmann方法
并行计算
可扩展
MPI
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Direct Effective Viscosity Approach for Modeling and Simulating Bingham Fluids with the Cumulant Lattice Boltzmann Method
来源期刊 流体动力学(英文) 学科 数学
关键词 Lattice Boltzmann Method Bingham Fluids Generalized Equilibrium
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 34-54
页数 21页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Lattice
Boltzmann
Method
Bingham
Fluids
Generalized
Equilibrium
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
流体动力学(英文)
季刊
2165-3852
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
302
总下载数(次)
0
总被引数(次)
0
论文1v1指导