作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The SIR(D) epidemiological model is defined through a system of transcendental equations, not solvable by elementary functions. In the present paper those equations are successfully replaced by approximate ones, whose solutions are given explicitly in terms of elementary functions, originating, piece-wisely, from generalized logistic functions: they ensure <em>exact</em> (in the numerical sense) asymptotic values, besides to be quite practical to use, for example with fit to data algorithms;moreover they unveil a useful feature, that in fact, at least with very strict approximation, is also owned by the (numerical) solutions of the <em>exact</em> equations. The novelties in the work are: the way the approximate equations are obtained, using simple, analytic geometry considerations;the easy and practical formulation of the final approximate solutions;the mentioned useful feature, never disclosed before. The work’s method and result prove to be robust over a range of values of the well known non-dimensional parameter called <em>basic reproduction ratio</em>, that covers at least all the known epidemic cases, from influenza to measles: this is a point which doesn’t appear much discussed in analogous works.
推荐文章
Effects of a proline solution cover on the geochemical and mineralogical characteristics of high-sul
Proline
Coal gangue
Pollution control
Heavy metal fraction
Mineralogical characteristics
Lyocell与Model织物风格比较
再生纤维素纤维
Lyocell织物
Model织物
风格特征
Zircon saturation model in silicate melts: a review and update
Zircon
Zircon saturation
Model
Silicate melt
Mafic to silicic melts
Peraluminous to peralkaline compositions
Igneous rocks
Thermometer
改进Closed_Form Solution方法进行前景物体运动模糊抠图
Closed_Form Solution抠图
运动模糊
梯度统计特征
透明度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Analytic Approximate Solution of the SIR Model
来源期刊 应用数学(英文) 学科 数学
关键词 SIR Epidemic Model Kermack-McKendrick Model Epidemic Dynamics Approximate Analytic Solution
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 58-73
页数 16页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SIR
Epidemic
Model
Kermack-McKendrick
Model
Epidemic
Dynamics
Approximate
Analytic
Solution
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导