原文服务方: 化工学报       
摘要:
优质数据集是实现高炉铁水硅含量准确预报的基础。针对铁水硅含量数据记录不均衡,特别是部分样本周期内存在多个硅含量值且波动较大,难以与输入变量进行合理关联等难题,提出了一种基于k-means++聚类算法的铁水硅含量数据优选方法。该方法首先利用k-means++的快速聚类能力,将样本分簇,用以表征不同的炉况;其次统计各簇硅含量频数直方图,由此确定高频区间;最后以高频区间为标准,遴选与样本关联的最佳硅含量值。以某钢铁厂2650m3的高炉为例,分别建立基于多层感知器和LSTM的深度学习模型进行预测,结果表明,该优选方法处理的数据与传统均值法相比,均方误差可减少0.003,命中率提高10%以上,对铁水硅含量数据的预处理具有较好的指导意义。
推荐文章
基于数据的高炉铁水硅含量预测
硅含量
差分进化
极限学习机
高炉
数据
基于bootstrap的高炉铁水硅含量预测
高炉
bootstrap
预测区间
可信度
高炉铁水硅含量序列的支持向量机预测模型
自回归AR(p)模型
主成分分析
支持向量机
炉温预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于k-means++的高炉铁水硅含量数据优选方法
来源期刊 化工学报 学科
关键词 预测 动态建模 神经网络 高炉炼铁 铁水硅含量 数据优选 k-means++ 深度学习
年,卷(期) 2021,(8) 所属期刊栏目 过程系统工程
研究方向 页码范围 3661-3670
页数 9页 分类号 TP393.4
字数 语种 中文
DOI 10.11949/0438-1157.20191115
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
预测
动态建模
神经网络
高炉炼铁
铁水硅含量
数据优选
k-means++
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化工学报
月刊
0438-1157
11-1946/TQ
大16开
1923-01-01
chi
出版文献量(篇)
11879
总下载数(次)
0
总被引数(次)
117834
论文1v1指导