基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对K-means聚类算法存在初始聚类中心影响聚类精度的问题,提出采用生物地理学算法优化K-means聚类中心,使其能提高聚类算法的准确率.在基准数据集中对本算法进行实验,其结果表明改进算法具有良好的性能.其次,采用改进的K-means聚类算法对不同工况下的锅炉燃烧工艺参数进行聚类,并挖掘出每一类中热效率最高时的燃烧工艺参数作为最佳工艺参数,使锅炉在最佳工艺参数下进行燃烧,达到提高热效率的目的.为了验证最佳工艺参数的有效性,采用贝叶斯最小二乘支持向量机辨识锅炉热效率模型,结果显示热效率明显提高,说明经过优化型K-means聚类算法挖掘的最佳工艺参数是有效的.
推荐文章
基于变异的k-means聚类算法
聚类
mk-means算法
变异
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于深度信念网络的K-means聚类算法研究
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
基于属性权重最优化的 k-means 聚类算法
聚类算法
属性权重
数据挖掘
目标函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化型K-means聚类算法的锅炉热效率研究
来源期刊 控制工程 学科
关键词 锅炉热效率 数据挖掘 K-means聚类算法 生物地理学优化算法 贝叶斯最小二乘支持向量机
年,卷(期) 2021,(1) 所属期刊栏目 工业过程及控制系统
研究方向 页码范围 29-34
页数 6页 分类号 TP183
字数 语种 中文
DOI 10.14107/j.cnki.kzgc.20180558
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (87)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
锅炉热效率
数据挖掘
K-means聚类算法
生物地理学优化算法
贝叶斯最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制工程
月刊
1671-7848
21-1476/TP
大16开
沈阳东北大学310信箱
8-216
1994
chi
出版文献量(篇)
5468
总下载数(次)
9
总被引数(次)
44239
论文1v1指导