基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Identifying the potential drug-target interactions (DTI) is critical in drug discovery.The drug-target interaction prediction methods based on collaborative filtering have demonstrated attractive prediction performance.However,many corresponding models cannot accurately express the relationship between similarity features and DTI features.In order to rationally represent the correlation,we propose a novel matrix factorization method,so-called collaborative matrix factorization with soft regularization (SRCMF).SRCMF improves the prediction performance by combining the drug and the target similarity information with matrix factorization.In contrast to general collaborative matrix factorization,the fundamental idea of SRCMF is to make the similarity features and the potential features of DTI approximate,not identical.Specifically,SRCMF obtains low-rank feature representations of drug similarity and target similarity,and then uses a soft regularization term to constrain the approximation between drug (target) similarity features and drug (target) potential features of DTI.To comprehensively evaluate the prediction performance of SRCMF,we conduct cross-validation experiments under three different settings.In terms of the area under the precision-recall curve (AUPR),SRCMF achieves better prediction results than six state-of-the-art methods.Besides,under different noise levels of similarity data,the prediction performance of SRCMF is much better than that of collaborative matrix factorization.In conclusion,SRCMF is robust leading to performance improvement in drug-target interaction prediction.
推荐文章
Discrimination geochemical interaction effects on mineralization at the polymetallic Glojeh deposit,
Backward Elimination
Quadratic polynomial model
Miniature-scale changes
Ordinal–disordinal interaction effect
Akima's polynomial contour map
Immobile element
An experimental study of interaction between pure water and alkaline feldspar at high temperatures a
Alkaline feldspar
Autoclave
High-temperature and high-pressure experiments
基于Soft多结构元素形态学的TM图像边缘检测
数学形态学
图像模型
多结构元素
边缘检测
Soft多结构元素
基于xPC Target的采集卡驱动程序开发
xPCTarget
实时仿真
驱动
S函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Collaborative Matrix Factorization with Soft Regularization for Drug-Target Interaction Prediction
来源期刊 计算机科学技术学报(英文版) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目 Special Section on AI Big Data Analytics in Biology and Medicine
研究方向 页码范围 310-322
页数 13页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (32)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学技术学报(英文版)
双月刊
1000-9000
11-2296/TP
16开
北京中关村科学院南路6号 《计算机科学技术学报(英)》编辑部
1986
eng
出版文献量(篇)
2207
总下载数(次)
1
总被引数(次)
12378
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导