基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电机滚动轴承故障诊断准确率问题,提出基于小波包分析结合人工鱼(AFSA)优化支持向量机(SVM)的电机故障诊断方法.利用小波包多分辨率分析法对电机的震动信号进行多层分解及重构,得到不同频段的信号时频图;然后采用AFSA算法对支持向量机中的参数惩罚参数(C)和核参数(σ)进行寻优选择,并最终建立AFSA-SVM故障诊断模型,提取信号时频图中频带能量值作为AFSA-SVM的输入特征向量进行学习、测试.最后通过仿真实验验证,故障诊断准确率达98.7%,并与粒子群算法优化支持向量机(PSO-SVM)和未经优化的支持向量机对比分析,结果表明该方法具有更高的故障诊断识别效果.
推荐文章
基于小波包分析和SVM的透平机振动故障诊断研究
小波包分析
透平机振动故障
EMD算法
SVM
基于小波包分解和EMD-SVM的轴承故障诊断方法
故障诊断
小波包分解
轴承
支持向量机
基于小波包分析和LS-SVM的柴油机故障诊断方法
柴油机
最小二乘支持向量机
故障诊断
小波包
基于小波包分析的高速牵引电机轴承故障诊断研究
牵引电机轴承
故障诊断
小波分析
虚拟仪器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波包和AFSA-SVM的电机故障诊断
来源期刊 电子测量技术 学科
关键词 小波包分解 AFSA-SVM 电机 故障诊断
年,卷(期) 2021,(2) 所属期刊栏目 理论与算法|Theory and Algorithms
研究方向 页码范围 48-55
页数 8页 分类号 TH133.33
字数 语种 中文
DOI 10.19651/j.cnki.emt.2005463
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (39)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(4)
  • 参考文献(3)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小波包分解
AFSA-SVM
电机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量技术
半月刊
1002-7300
11-2175/TN
大16开
北京市东城区北河沿大街79号
2-336
1977
chi
出版文献量(篇)
9342
总下载数(次)
50
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导