为准确预测苹果糖度,基于傅里叶变换近红外光谱、偏最小二乘法和深度学习技术,建立了不同的苹果糖度预测模型.使用傅里叶变换近红外光谱仪和折光仪采集160个苹果的光谱与糖度信息,建立不同光谱预处理方法的偏最小二乘法(Partial least square,PLS)模型,通过常用的竞争性自适应重加权算法减少PLS模型计算量,对比得到最好的PLS模型预测精度;使用深度学习的MobileNetV2网络构建苹果糖度预测模型,调整最适合的模型构建参数.试验结果表明:经过标准正态变量变换(Standard normal variate,SNV)光谱预处理的PLS模型预测精度最高,其预测模型相关系数(Rp)为0.9333、均方根误差(RMSEP)为0.4765°Brix,特征波长筛选可减少计算量,但会使预测模型精度稍微下降;经过数据增强处理的MobileNetV2模型可以获得一定的糖度预测精度,其Rp为0.8431、RMSEP为0.8984°Brix.结果 表明,基于深度学习的MobileNetV2网络结构训练得到的糖度预测模型具有一定的可行性,但SNV预处理的全波段PLS模型精度最高,PLS建模依然是小批量样本建模简单高效的方法.