基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Objectives: To develop and validate a radiomics nomogram for preoperative prediction of tumor histologic grade in gastric adenocarcinoma (GA).Methods: This retrospective study enrolled 592 patients with clinicopathologically confirmed GA (low-grade:n=154;high-grade: n=438) from January 2008 to March 2018 who were divided into training (n=450) and validation (n=142) sets according to the time of computed tomography (CT) examination.Radiomic features were extracted from the portal venous phase CT images.The Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) regression model were used for feature selection,data dimension reduction and radiomics signature construction.Muldvariable logistic regression analysis was applied to develop the prediction model.The radiomics signature and independent clinicopathologic risk factors were incorporated and presented as a radiomics nomogram.The performance of the nomogram was assessed with respect to its calibration and discrimination.Results: A radiomics signature containing 12 selected features was significantly associated with the histologic grade of GA (P<0.001 for both training and validation sets).A nomogram including the radiomics signature and tumor location as predictors was developed.The model showed both good calibration and good discrimination,in which C-index in the training set,0.752[95% confidence interval (95% CI): 0.701-0.803];C-index in the validation set,0.793 (95% CI: 0.711-0.874).Conclusions: This study developed a radiomics nomogram that incorporates tumor location and radiomics signatures,which can be useful in facilitating preoperative individualized prediction of histologic grade of GA.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Application of K-means and PCA approaches to estimation of gold grade in Khooni district (central Ir
K-means method
Clustering
Principal
component analysis (PCA)
Estimation
Gold
Khooni district
基于Cross-Validation的小波自适应去噪方法
小波变换
Cross-Validation
自适应滤波
闽值
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Development and validation of a CT-based radiomics nomogram for preoperative prediction of tumor histologic grade in gastric adenocarcinoma
来源期刊 中国癌症研究(英文版) 学科
关键词
年,卷(期) 2021,(1) 所属期刊栏目 Original Article
研究方向 页码范围 69-78
页数 10页 分类号
字数 语种 英文
DOI 10.21147/j.issn.1000-9604.2021.01.08
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (5)
参考文献  (31)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(3)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(5)
  • 参考文献(3)
  • 二级参考文献(2)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(8)
  • 参考文献(8)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国癌症研究(英文版)
双月刊
1000-9604
11-2591/R
16开
北京市海淀区阜成路52号
1988
eng
出版文献量(篇)
1688
总下载数(次)
0
总被引数(次)
8913
论文1v1指导