基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Often in longitudinal studies, some subjects complete their follow-up visits, but others miss their visits due to various reasons. For those who miss follow-up visits, some of them might learn that the event of interest has already happened when they come back. In this case, not only are their event times interval-censored, but also their time-dependent measurements are incomplete. This problem was motivated by a national longitudinal survey of youth data. Maximum likelihood estimation (MLE) method based on expectation-maximization (EM) algorithm is used for parameter estimation. Then missing information principle is applied to estimate the variance-covariance matrix of the MLEs. Simulation studies demonstrate that the proposed method works well in terms of bias, standard error, and power for samples of moderate size. The national longitudinal survey of youth 1997 (NLSY97) data is analyzed for illustration.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
基于Maximum Likelihood与HMM的文本挖掘
隐马尔可夫模型
最大似然
文本挖掘
信息抽取
Lyocell与Model织物风格比较
再生纤维素纤维
Lyocell织物
Model织物
风格特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Maximum Likelihood Estimation for the Pooled Repeated Partly Interval-Censored Observations Logistic Regression Model
来源期刊 统计学期刊(英文) 学科 工学
关键词 EM Algorithm Longitudinal Studies Louis’ Method Partly Interval-Censored Failure Time Data Pooled Repeated Observations
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 230-242
页数 13页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
EM
Algorithm
Longitudinal
Studies
Louis’
Method
Partly
Interval-Censored
Failure
Time
Data
Pooled
Repeated
Observations
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导