We study the Leibniz n-algebra Un(∑),whose multiplication is defined viathe bracket of a Leibniz algebra ∑ as[x1,...,xn]=[x1,[...,[xn-2,[xn-1,xn]]...]].Weshow that Un(∑) is simple if and only if ∑ is a simple Lie algebra.An analog of Levi'stheorem for Leibniz algebras in Un(Lb) is established and it is proven that the Leibnizn-kernel of Un(Σ) for any semisimple Leibniz algebra Σ is the n-algebra Un(Σ).