基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统多目标跟踪算法中行人检测速度慢、易受光照变化、行人快速移动及部分遮挡因素的影响造成行人目标跟踪性能差等问题,提出一种根据经典的Tracking-by-Detection模式,采用深度学习YOLOv3算法检测行人目标,然后利用FAST角点检测算法与BRISK特征点描述算法对相邻帧间的行人目标进行特征点匹配,实现多目标行人跟踪的算法.实验结果表明行人目标在背光、快速移动、部分遮挡等复杂环境下均获得了良好的连续跟踪效果,平均精度达到87.7%,速度达到35帧/s.
推荐文章
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
基于ORB特征点匹配的多目标跟踪算法
显著性
特征点
匹配
目标跟踪
一种基于改进Yolov3的弹载图像多目标检测方法
弹载图像
目标检测
YOLOv3
位置损失
快速NMS
基于暗通道和改进YOLOv3的雾天车辆检测算法
雾天车辆检测
暗通道去雾算法
YOLOv3
K-means
先验框
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于YOLOv3检测和特征点匹配的多目标跟踪算法
来源期刊 计量学报 学科 工学
关键词 计量学 多目标跟踪 深度学习 YOLOv3算法 特征点匹配 图像处理
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 157-162
页数 6页 分类号 TB96
字数 语种 中文
DOI 10.3969/j.issn.1000-1158.2021.02.05
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (27)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(8)
  • 参考文献(3)
  • 二级参考文献(5)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计量学
多目标跟踪
深度学习
YOLOv3算法
特征点匹配
图像处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
论文1v1指导