基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Studies on ballistic penetration to laminates is complicated, but important for design effective protection of structures. Experimental means of study is expensive and can often be dangerous. Numerical simu-lation has been an excellent supplement, but the computation is time-consuming. Main aim of this thesis was to develop and test an effective tool for real-time prediction of projectile penetrations to laminates by training a neural network and a decision tree regression model. A large number of finite element models were developed;the residual velocities of projectiles fromfinite element simulations were used as the target data and processed to produce sufficient number of training samples. Study focused on steel 4340tpolyurea laminates with various configurations. Four different 3D shapes of the projectiles were modeled and used in the training. The trained neural network and decision tree model was tested using independently generated test samples using finite element models. The predicted projectile velocity values using the trained machine learning models are then compared with thefinite element simulation to verify the effectiveness of the models. Additionally, both models were trained using a published experimental data of projectile impacts to predict residual velocity of projectiles for the unseen samples. Performance of both the models was evaluated and compared. Models trained with Finite element simulation data samples were found capable to give more accurate predication, compared to the models trained with experimental data, becausefinite element modeling can generate much larger training set, and thus finite element solvers can serve as an excellent teacher. This study also showed that neural network model performs better with small experimental dataset compared to decision tree regression model.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
免疫捕捉real-time PCR对蚜虫中CMV检测体系的建立与应用
免疫捕捉real-time PCR
黄瓜花叶病毒(CMV)
蚜虫
Real-time PCR方法检测肉品中的沙门氏菌
沙门氏菌
Real-time PCR
快速检测
肉品
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Real-time prediction of projectile penetration to laminates by training machine learning models withfinite element solver as the trainer
来源期刊 防务技术 学科
关键词
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 147-160
页数 14页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
防务技术
双月刊
2214-9147
10-1165/TJ
北京市海淀区车道沟10号(北京2431信箱)
eng
出版文献量(篇)
1138
总下载数(次)
0
总被引数(次)
1442
论文1v1指导