基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Reading text in images automatically has become an attractive research topic in computer vision.Specifically,end-to-end spotting of scene text has attracted significant research attention,and relatively ideal accuracy has been achieved on several datasets.However,most of the existing works overlooked the semantic connection between the scene text instances,and had limitations in situations such as occlusion,blurring,and unseen characters,which result in some semantic information lost in the text regions.The relevance between texts generally lies in the scene images.From the perspective of cognitive psychology,humans often combine the nearby easy-to-recognize texts to infer the unidentifiable text.In this paper,we propose a novel graph-based method for intermediate semantic features enhancement,called Text Relation Networks.Specifically,we model the co-occurrence relationship of scene texts as a graph.The nodes in the graph represent the text instances in a scene image,and the corresponding semantic features are defined as representations of the nodes.The relative positions between text instances are measured as the weights of edges in the established graph.Then,a convolution operation is performed on the graph to aggregate semantic information and enhance the intermediate features corresponding to text instances.We evaluate the proposed method through comprehensive experiments on several mainstream benchmarks,and get highly competitive results.For example,on the SCUT-CTW1500,our method surpasses the previous top works by 2.1%on the word spotting task.
推荐文章
基于 EPICS 的 J-TEXT CODAC系统
CODAC系统
托卡马克
ITER
EPICS
J-TEXT托卡马克数据采集系统设计
J-TEXT
数据采集
MDSplus
VxWorks END网络驱动软件的开发与实现
VxWorks
MUX(多路复用)
END(增强型网络驱动)
BSP(板级支持包)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An end-to-end text spotter with text relation networks
来源期刊 网络空间安全科学与技术(英文版) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 25-37
页数 13页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
网络空间安全科学与技术(英文版)
季刊
2096-4862
10-1537/T
eng
出版文献量(篇)
54
总下载数(次)
0
论文1v1指导