基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
作为深度学习算法中重要的环节,激活函数可以为神经网络引入非线性因素.大量学者通过提出或改进激活函数的方法在一定程度上提高了算法的优化及泛化能力.研究了现阶段的激活函数,将激活函数大致分为S系激活函数和ReLU系激活函数,从不同激活函数的功能特点和存在的饱和性、零点对称和梯度消失及梯度爆炸的现象进行研究分析,针对Sigmoid,Tanh,ReL,P-ReLU,L-ReLU等典型激活函数分别应用在卷积神经网络(Covolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)中测试.在CNN中使用MNIST,CIFAR-10经典数据集测试不同激活函数,并在RNN中使用大豆粮油数据集对大豆的产值进行预警,通过结果得到S系激活函数比ReLU系激活函数收敛更快,而ReLU系激活函数则在精度上优于S系激活函数,其中P-ReLU在大豆产值预测中达到93%的最高精度.
推荐文章
基于改进sigmoid激活函数的深度神经网络训练算法研究
深度神经网络
残差衰减
sigmoid激活函数
多函数激活的拉普拉斯深度回声状态网络
深度回声状态网络
激活函数
拉普拉斯特征映射
遗传算法
深度学习神经网络的新型自适应激活函数
激活函数
卷积神经网络
机器学习
基于激活函数四参可调的BP神经网络改进算法
神经网络
BP算法
激活函数
可调参数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度学习算法的激活函数研究
来源期刊 无线电通信技术 学科 工学
关键词 激活函数 卷积神经网络 循环神经网络 深度学习
年,卷(期) 2021,(1) 所属期刊栏目 工程实践及应用技术
研究方向 页码范围 115-120
页数 6页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1003-3114.2021.01.016
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (83)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(6)
  • 参考文献(0)
  • 二级参考文献(6)
2018(7)
  • 参考文献(4)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
激活函数
卷积神经网络
循环神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线电通信技术
双月刊
1003-3114
13-1099/TN
大16开
河北省石家庄市中山西路589号
18-149
1972
chi
出版文献量(篇)
2815
总下载数(次)
6
总被引数(次)
11314
论文1v1指导