Multiphase catalysis is used in many industrial processes;however,the reaction rate can be restricted by the low accessibility of gaseous reactants to the catalysts in water,especially for oxygen-dependent biocatalytic reactions.Despite the fact that solubility and diffusion rates of oxygen in many liquids(such as perfluorocarbon)are much higher than in water,multiphase reactions with a second liquid phase are still difficult to conduct,because the interaction efficiency between immiscible phases is extremely low.Herein,we report an efficient triphase biocatalytic system using oil core-silica shell oxygen nanocarriers.Such design offers the biocatalytic system an extremely large water-solid-oil triphase interfacial area and a short path required for oxygen diffusion.Moreover,the silica shell stabilizes the oil nanodroplets in water and prevents their aggregation.Using oxygen-dependent oxidase enzymatic reaction as an example,we demonstrate this efficient biocatalytic system for the oxidation of glucose,choline,lactate,and sucrose by substituting their corresponding oxidase counterparts.A rate enhancement by a factor of 10-30 is observed when the oxygen nanocarriers are introduced into reaction system.This strategy offers the opportunity to enhance the efficiency of other gaseous reactants involved in multiphase catalytic reactions.