Most approaches to estimate a scene’s 3D depth from a single image often model the point spread function (PSF) as a 2D Gaussian function. However, those method<span>s</span><span> are suffered from some noises, and difficult to get a high quality of depth recovery. We presented a simple yet effective approach to estimate exactly the amount of spatially varying defocus blur at edges, based on </span><span>a</span><span> Cauchy distribution model for the PSF. The raw image was re-blurred twice using two known Cauchy distribution kernels, and the defocus blur amount at edges could be derived from the gradient ratio between the two re-blurred images. By propagating the blur amount at edge locations to the entire image using the matting interpolation, a full depth map was then recovered. Experimental results on several real images demonstrated both feasibility and effectiveness of our method, being a non-Gaussian model for DSF, in providing a better estimation of the defocus map from a single un-calibrated defocused image. These results also showed that our method </span><span>was</span><span> robust to image noises, inaccurate edge location and interferences of neighboring edges. It could generate more accurate scene depth maps than the most of existing methods using a Gaussian based DSF model.</span>