We introduce the notions of a four-angle Hopf quasimodule and an adjoint quasiaction over a Hopf quasigroup H in a symmetric monoidal category C.If H possesses an adjoint quasiaction,we show that symmetric Yetter-Drinfeld categories are trivial,and hence we obtain a braided monoidal category equivalence between the category of right Yetter-Drinfeld modules over H and the category of four-angle Hopf modules over H under some suitable conditions.