基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Object detection is widely used in object tracking; anchor-free object tracking provides an end-to-end single-object-tracking approach. In this study, we propose a new anchor-free network, the Siamese center-prediction network (SiamCPN). Given the presence of referenced object features in the initial frame, we directly predict the center point and size of the object in subsequent frames in a Siamese-structure network without the need for per-frame post-processing operations. Unlike other anchor-free tracking approaches that are based on semantic segmentation and achieve anchor-free tracking by pixel-level prediction, SiamCPN directly obtains all information required for tracking, greatly simplifying the model. A center-prediction sub-network is applied to multiple stages of the backbone to adaptively learn from the experience of different branches of the Siamese net. The model can accurately predict object location, implement appropriate corrections, and regress the size of the target bounding box. Compared to other leading Siamese networks, SiamCPN is simpler, faster, and more efficient as it uses fewer hyperparameters. Experiments demonstrate that our method outperforms other leading Siamese networks on GOT-10K and UAV123 benchmarks, and is comparable to other excellent trackers on LaSOT, VOT2016, and OTB-100 while improving inference speed 1.5 to 2 times.
推荐文章
Center服务的基准测试
呼叫中心
基准测试
测试范围
步骤
树状网络上k-tree center问题
树中心问题
树收缩
控制
处理多介质界面的改进型 Front Tracking 方法
界面拓扑结构
Front Tracking 方法
界面捕捉
一种适用于嵌入式平台的Siamese网络匹配算法
图像匹配
卷积神经网络(CNN)
深度学习
嵌入式平台
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 SiamCPN: Visual tracking with the Siamese center-prediction network
来源期刊 计算可视媒体(英文版) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目 RESEARCH ARTICLE
研究方向 页码范围 253-265
页数 13页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(3)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
计算可视媒体(英文)
季刊
2096-0433
10-1320/TP
eng
出版文献量(篇)
180
总下载数(次)
0
论文1v1指导