We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co3Sn2S2 with a quasi-two-dimensional structure.Both in-plane and out-of-plane dispersions of the spin waves were revealed in the ferromagnetic state.Similarly,dispersive but damped spin excitations were found in the paramagnetic state.The effective exchange interac-tions were estimated using a semi-classical Heisenberg model to consistently reproduce the experimental Tc and spin stiffness.However,a full spin wave gap below Eg = 2.3 meV was observed at T = 4 K.This value was considerably larger than the estimated magnetic anisotropy energy(~0.6 meV),and its temperature dependence indicated a significant contribution from the Weyl fermions.These results suggest that Co3Sn2S2 is a three-dimensional correlated system with a large spin stiffness,and the low-energy spin dynamics can interplay with the topological electron states.