基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Background::Oncomelania hupensis is only intermediate snail host of Schistosoma japonicum, and distribution of O. hupensis is an important indicator for the surveillance of schistosomiasis. This study explored the feasibility of a random forest algorithm weighted by spatial distance for risk prediction of schistosomiasis distribution in the Yangtze River Basin in China, with the aim to produce an improved precision reference for the national schistosomiasis control programme by reducing the number of snail survey sites without losing predictive accuracy. Methods::The snail presence and absence records were collected from Anhui, Hunan, Hubei, Jiangxi and Jiangsu provinces in 2018. A machine learning of random forest algorithm based on a set of environmental and climatic variables was developed to predict the breeding sites of the O. hupensis intermediated snail host of S. japonicum. Different spatial sizes of a hexagonal grid system were compared to estimate the need for required snail sampling sites. The predictive accuracy related to geographic distances between snail sampling sites was estimated by calculating Kappa and the area under the curve (AUC). Results::The highest accuracy (AUC = 0.889 and Kappa = 0.618) was achieved at the 5 km distance weight. The five factors with the strongest correlation to O. hupensis infestation probability were: (1) distance to lake (48.9%), (2) distance to river (36.6%), (3) isothermality (29.5%), (4) mean daily difference in temperature (28.1%), and (5) altitude (26.0%). The risk map showed that areas characterized by snail infestation were mainly located along the Yangtze River, with the highest probability in the dividing, slow-flowing river arms in the middle and lower reaches of the Yangtze River in Anhui, followed by areas near the shores of China’s two main lakes, the Dongting Lake in Hunan and Hubei and the Poyang Lake in Jiangxi. Conclusions::Applying the machine learning of random forest algorithm made it feasible to precisely predict snail infestation probability, an approach that could improve the sensitivity of the Chinese schistosome surveillance system. Redesign of the snail surveillance system by spatial bias correction of O. hupensis infestation in the Yangtze River Basin to reduce the number of sites required to investigate from 2369 to 1747.
推荐文章
Temporal and spatial characteristics of dissolved organic carbon in the Wujiang River, Southwest Chi
Carbon cycle
Dissolved organic carbon
Dam-building effect
The Wujiang River
Geochemistry and sediment in the main stream of the Ca River basin, Vietnam: weathering process, sol
Ca River
Dissolved solids
Geochemistry
Carbonate weathering
Suspended solids
Spatial characters of nutrients in Wujiangdu Reservoir in karst river, SW China
Wujiangdu Reservoir
Nutrients distribution characteristics
Dam
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Infestation risk of the intermediate snail host of Schistosoma japonicum in the Yangtze River Basin: improved results by spatial reassessment and a random forest approach
来源期刊 贫困所致传染病(英文) 学科
关键词 Schistosomiasis Oncomelania hupensis Snail infestation Yangtze River Random forest Spatial sampling Machine learning China
年,卷(期) 2021,(3) 所属期刊栏目 Research Article
研究方向 页码范围 34-46
页数 13页 分类号
字数 语种 中文
DOI 10.1186/s40249-021-00852-1
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (35)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2019(6)
  • 参考文献(6)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Schistosomiasis
Oncomelania hupensis
Snail infestation
Yangtze River
Random forest
Spatial sampling
Machine learning
China
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
贫困所致传染病(英文)
双月刊
2095-5162
10-1399/R
上海市黄浦区瑞金二路207号
2016
eng
出版文献量(篇)
434
总下载数(次)
0
论文1v1指导