基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Timely and reliable estimation of regional crop yield is a vital component of food security assessment, especially in developing regions. The traditional crop forecasting methods need ample time and labor to collect and process field data to release official yield reports. Satellite remote sensing data is considered a cost-effective and accurate way of predicting crop yield at pixel-level. In this study, maximum Enhanced Vegetation Index (EVI) during the crop-growing season was integrated with Machine Learning Regression (MLR) models to estimate wheat and rice yields in Pakistan's Punjab province. Five MLR models were compared using a fivefold cross-validation method for their predictive accuracy. The study results revealed that the regression model based on the Gaussian process outperformed over other models. The best performing model attained coefficient of determination (R2), Root Mean Square Error (RMSE, t/ ha), and Mean Absolute Error (MAE, t/ha) of 0.75, 0.281, and 0.236 for wheat; 0.68, 0.112, and 0.091 for rice, respectively. The proposed method made it feasible to predict wheat and rice 6– 8 weeks before the harvest. The early prediction of crop yield and its spatial distribution in the region can help formulate efficient agricultural policies for sustainable social, environmental, and economic progress.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Simulation of hail effects on crop yield losses for corn-belt states in USA
crops
economic analysis
agriculture
EPIC
soil type
hail damage
simulation model
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Integration of maximum crop response with machine learning regression model to timely estimate crop yield
来源期刊 地球空间信息科学学报(英文版) 学科
关键词
年,卷(期) 2021,(3) 所属期刊栏目
研究方向 页码范围 474-483
页数 10页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
地球空间信息科学学报(英文版)
季刊
1009-5020
42-1610/P
16开
武汉市珞瑜路129号武汉大学测绘校区
1998
eng
出版文献量(篇)
958
总下载数(次)
0
总被引数(次)
2719
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导