基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
密度峰值是一种基于密度的聚类算法,该算法假设类簇中心点具有较高的密度且被密度较小的节点包围.由于图结构的性质,密度峰值无法直接适用于网络结构,现有的基于密度峰值的社区发现算法大部分是基于图的拓扑结构或者邻接矩阵度量节点近似度,这种方法往往引入较大的计算复杂度.文中结合网络嵌入方法通过低维向量表示网络中的节点信息,提出了一种基于密度峰值和网络嵌入的重叠社区发现算法(overlapping community detection based on density network embedding,OCDDNE).该算法首先通过网络嵌入获取节点的网络结构特征,然后基于改进的密度峰值的方法对嵌入后的节点向量进行多标签聚类,使编码后的向量之间的结构关系得到更好的揭示,从而发现网络中的重叠社区结构.在人工网络和真实网络的验证实验表明,该算法可以有效的挖掘网络中的重叠社区结构,并在结构复杂度较高的网络中优于其他算法.
推荐文章
基于连边距离矩阵的重叠社区发现
复杂网络
重叠社团发现
连边距离
随机游走
基于连边相似度的重叠社区发现算法研究
社区发现
重叠社区
相似度
划分密度
基于种子节点选择的重叠社区发现算法
重叠社区
局部社区
吸引度函数
社区扩展
基于LeaderRank的多标签传播重叠社区发现算法
重叠社区发现
多标签传播
COPRA
LeaderRank
节点重要性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度峰值和网络嵌入的重叠社区发现
来源期刊 山东大学学报(理学版) 学科 工学
关键词 重叠社区发现 网络嵌入 密度峰值 复杂网络 隶属度
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 91-102
页数 12页 分类号 TP391
字数 语种 中文
DOI 10.6040/j.issn.1671-9352.4.2020.145
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (9)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(2)
  • 参考文献(1)
  • 二级参考文献(1)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
重叠社区发现
网络嵌入
密度峰值
复杂网络
隶属度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(理学版)
月刊
1671-9352
37-1389/N
大16开
济南市经十路73号
24-222
1951
chi
出版文献量(篇)
4108
总下载数(次)
7
总被引数(次)
19503
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导